As always, show your work and follow the HW format. You may use Excel, but must show sample calculations.

1. <u>Single Mean</u>. A new roof truss is designed to hold more than 5000 pounds of snow load. You test 20 trusses and obtain a mean of 5025 pounds and standard deviation of 80 pounds. Use the 8-step method to determine if the mean is greater than 5000 pounds, at a significance of 0.05.

SOLUTION:

- 1. μ
- 2. H_0 : $\mu = 5000 \text{ lb}$
- 3. H_1 : $\mu > 5000 \text{ lb}$
- 4. $\alpha = 0.05$
- 5. TS = T (because σ unknown and n < 30)
- 6. Reject H_o if TS>CV, where $CV = t_{\alpha,v} = t_{0.05,19} = 1.73$ [Table A.2 or T.INV(0.95,19)]
- 7. Calculate necessary values:

a.
$$T_o = \frac{\bar{x} - \mu_o}{s/\sqrt{n}} = \frac{\overline{5025} - 5000}{80/\sqrt{20}} = 1.40$$

8. 1.40 < 1.71. Fail to Reject H_o at $\alpha = 0.05$; the capacity of the roof truss appears to NOT be greater than 5000 lb.

2. <u>Two Means</u>. Two different types of tubing should have different maximum pressures. Use the sample data given below to assess this using the 8-step method, using a significance of 0.05.

Sample Parameter	Tube 1	Tube 2
Size	22	25
Mean, psi	150	160
Standard Deviation, psi	23	15

SOLUTION:

- 1. $\mu_1 \mu_2$
- 2. $H_0: \mu_1 \mu_2 = 0$
- 3. $H_1: \mu_1 \mu_2 \neq 0$
- 4. $\alpha = 0.05$
- 5. $TS = T^*$ (because σ 's unknown and unequal, and both n < 30)
- 6. Reject H_o if |TS| > CV, where $CV = t_{\alpha/2,\nu} = t_{0.025,36} = 2.03$ [Table A.2 or T.INV(0.95,36]

a.
$$\nu = \frac{\frac{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2}{(\frac{s_1^2}{n_1})^2}}{\frac{(\frac{s_1^2}{n_1})^2}{n_1 + 1} + \frac{s_2^2}{n_2 + 1}} - 2 = \frac{\frac{(\frac{23^2}{22} + \frac{15^2}{25})^2}{(\frac{23}{22})^2}}{\frac{(\frac{23}{22})^2}{22 + 1} + \frac{(\frac{15^2}{25})^2}{25 + 1}} - 2 = 36$$

7. Calculate necessary values:

a.
$$T_o^* = \frac{(150 - 160) - 0}{(\frac{23^2}{22} + \frac{15^2}{25})^{0.5}} = -1.74$$

8. |-1.74| < 2.03. Fail to Reject H_o at $\alpha = 0.05$; The pressure capacities are not significantly different.

Defects in parking spot, d _i	Parking spots with d _i defects, n _i		
0	720		
1	650		
2	330		
3	90		
≥4	5		

3. <u>Distribution Checking</u>. Can parking spot pavement defects be predicted by the Poisson Distribution? You evaluate almost 1800 parking spots and observe the following.

Use the 8-step method with a significance level of 0.1. "r" will be the average number of defects per parking spot. Determine r as the (total number of defects observed) / (total number of parking spots evaluated).

Solution:

Distribution Checking Table

Count	n _i	p _i 736.122	ei	Ci
0	720	0.41010	736.122	0.4
1	650	0.36554	656.153	0.1
2	330	0.16292	292.436	4.8
3	90	0.04841	86.889	0.1
≥4	5	0.01304	23.400	14.5
Sums \rightarrow	1795	1	1795	19.8

Sample Calculations:

$$\begin{split} r &= (0.720 + 1.650 + 2.330 + 3.90 + 4.5)/1795 = 0.8914 \\ \Pr(X = x) &= \frac{r^x}{x!} e^{-r}, \text{ e.g., for } X = 0: \frac{0.8914^0}{0!} e^{-0.8914} = 0.4101 \text{ and } \Pr(X \ge 4) = 1 - \text{ sum of } 0 \text{ to } 3 \text{ counts.} \\ e_i &= p_i \cdot 1795, \text{ e.g., for the first row, } e_1 = 0.4101 \cdot 1795 = 736.122. \\ c_i &= (n_i - e_i)^2 / e_i, \text{ e.g., for the first row, } c_1 = (720 - 736.122)^2 / 736.122 = 0.40. \\ C_o \text{ equals the sum of the } c_i \text{ column } = 19.8. \end{split}$$

- 1. C (Stand in for all $n_i = e_i$)
- 2. $H_0: C = 0$ (All $n_i = e_i$)
- 3. H_1 : C > 0 (At least one $n_i \neq e_i$)
- 4. α = 0.1
- 5. TS = C
- 6. Reject H_o if TS > CV, where v =5-1-1=3, and CV = $\chi^2_{0.1,3}$ = 6.25 [Table A.3 or CHISQ.INV.RT(0.1,3)]
- 7. Calculate necessary values: see Table, c_o = 19.8
- Reject or Fail to Reject based on rejection equation: 19.8 > 6.25; Reject H_o at significance level 0.1, the Poisson distribution does not appears to model the parking spot pavement defects.

orerail inte							
region. Yo	region. You will need to calculate f_o and $f_{\alpha,u,v}$.						
Х	Y	S _{xy}	s _{xx}	\hat{y}_i	ss _r	SS _T	SSE
4	5	84.00	110.25	6.42	43.28	64.00	2.02
6	9	34.00	72.25	7.67	28.37	16.00	1.76
10	8	22.50	20.25	10.18	7.95	25.00	4.75
14	15	-1.00	0.25	12.69	0.10	4.00	5.35
23	20	59.50	72.25	18.33	28.37	49.00	2.80
30	21	124.00	240.25	22.71	94.32	64.00	2.93
$\overline{X}\downarrow$	$\overline{Y}\downarrow$	S _{xy} ↓	S _{xx} ↓	NA	SS _R ↓	ss _⊤ ↓	SS _E ↓
14.50	13.00	323.00	515.50	NA	202.38	222.00	19.62

4. <u>Simple Linear Regression</u>. Given the data below, use the 8-step method to determine if the overall linear relationship is significant at the 0.01 significance level. Use a "TS > CV" rejection region. You will need to calculate f_o and $f_{\alpha,u,v}$.

SOLUTION:

- 1. F (Stand in for slope coefficients, β_j)
- 2. H_0 : F = 0 (All β_j = 0)
- 3. H_1 : F > 0 (At least one $\beta_j \neq 0$)
- 4. $\alpha = 0.1$
- 5. TS = F
- 6. Reject H_0 if TS > CV, u = p 1 = 2 1 and v = n p = 5 2, CV = $f_{0.01,1,4}$ = 21.2 [Table A.5 or F.INV.RT(0.01,1,4) or F.INV(0.9,1,3)]
- 7. Calculate necessary values: $TS = f_o = MS_R/MS_E = (SS_R/(p-1))/(SS_E/(n-p)) = (202.38/1)/(19.62/4) = 41.3$
- Reject or Fail to Reject based on rejection equation: 41.3 > 21.2; Reject H_o at significance level 0.01, a significant linear relationship exists between the dependent variable and the independent variable.

an <u>imatepie Ented Regression</u> of a rando b to predict in obe the Excel Data Analysis Add in					
Α	В	Y			
22	1	8			
17	3	10			
10	4	11			
14	6	14			
23	10	21			

5. <u>Multiple Linear Regression</u>. Use A and B to predict Y. Use the Excel Data Analysis Add-in.

Include the Excel Data Analysis Add-in output and use it to answer the following questions. (a) Use the 8-step method to determine if the overall linear relationship is significant at the 0.01 significance level. Use a "p-value < α " rejection region.

(b) Use the 8-step method to determine if β_1 is not equal to zero (at the 0.01 significance level). Use a "p-value < α " rejection region.

(c) Use the 8-step method to determine if β_2 is not equal to zero (at the 0.01 significance level). Use a "p-value < α " rejection region.

SOLUTION:

AN	OVA				
	df	SS	MS	F	Significance F
Regression	2	102.6926505	51.34632526	956.6198887	0.001044256
Residual	2	0.107349483	0.053674742		
Total	4	102.8			
					_
	Coefficients	Standard Error	t Stat	P-value	
Intercept	3.911314	0.391610751	9.987758232	0.009876267	
X Variable 1	0.116382	0.021652021	5.375127114	0.032912464	
X Variable 2	1.434773	0.034497192	41.59100506	0.000577597	

(a)

- 1. F (Stand in for slope coefficients, β_j)
- 2. H_0 : F = 0 (All β_j = 0)
- 3. H_1 : F > 0 (At least one $\beta_j \neq 0$)
- 4. α = 0.01
- 5. TS = F
- 6. Reject H_0 if P-Value < α , from Table P-Value = 0.00104
- 7. Calculate necessary values: NA
- Reject or Fail to Reject based on rejection equation: 0.00104 < 0.01; Reject H_o at significance level 0.01, a significant linear relationship exists between the dependent variable and the independent variables.

```
(b)
```

- 1. β₁
- 2. $H_0: \beta_1 = 0$
- 3. $H_o: \beta_1 \neq 0$
- 4. $\alpha = 0.01$
- 5. T
- 6. Reject H_0 if p-value < α , where p-value is determined from the Excel Data Analysis Addin Table given above. p-value = 0.0329 (From Table above)
- 7. Calculate necessary values: NA
- 8. Reject or Fail to Reject H_o: 0.0329 > 0.01; Fail to Reject H_o at $\alpha = 0.05$, β_1 is <u>not</u> significantly different from zero.

(c)

- 1. <mark>β</mark>2
- 2. $H_0: \beta_2 = 0$
- 3. H_o: β₂ ≠ 0
- 4. α = 0.01
- 5. T
- 6. Reject H_o if p-value < α where p-value is determined from the Excel Data Analysis Add-in Table given above. p-value = 0.000578 (From Table above)
- 7. Calculate necessary values: NA
- 8. Reject or Fail to Reject H_o: 0.000578< 0.05; Reject H_o at α = 0.01, β_2 is significantly different from zero.